UV femtosecond laser inscribes a 300 nm period nanostructure in a pure fused silica
نویسندگان
چکیده
منابع مشابه
UV femtosecond laser inscribes a 300 nm period nanostructure in a pure fused silica
We report on the first recording of a periodic structure of ∼150 nm pitch in a permanently moving sample of a pure fused silica using the tightly focused, 82 nJ, 267 nm, 300 fs, 1 kHz laser pulses.
متن کاملArresting UV-Laser Damage in Fused Silica
26 LLE Review, Volume 77 Deciding when to replace spot-damage-afflicted fused-silica optics or, in the case of inaccessible, space-based lasers, predicting the useful service life of fused-silica optics before catastrophic, pulsed-laser-driven crack growth shatters a part has recently become simpler. By empirically deriving a rule for laser-driven crack growth in fused silica as a function of t...
متن کاملFemtosecond laser micromachining of fused silica molds.
The use of low-energy femtosecond laser beam combined with chemical etching has been proven to be an efficient method to fabricate three-dimensional structures in fused silica. For high-volume application, this technology--like other serial processes--suffers from a moderate production rate. Here, we show that femtosecond laser can also be employed to fabricate silica molds and other patterned ...
متن کاملFemtosecond laser absorption in fused silica: Numerical and experimental investigation
Single pulse transmissivity and reflectivity of fused silica irradiated by tightly focused 90 fs laser pulses at a center wavelength of 800 nm are numerically and experimentally investigated to study the role of nonlinear photoionization and avalanche ionization processes in free electron generation. The laser beam inside fused silica is modeled with a 2+1 -dimensional propagation equation whic...
متن کاملDirect welding of fused silica with femtosecond fiber laser
Development of techniques for joining and welding materials on a micrometer scale is of great importance in a number of applications, including life science, sensing, optoelectronics and MEMS packaging. In this paper, methods of welding and sealing optically transparent materials using a femtosecond fiber laser (1 MHz & 1 μm) were demonstrated which overcome the limit of small area welding of o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Measurement Science and Technology
سال: 2007
ISSN: 0957-0233,1361-6501
DOI: 10.1088/0957-0233/18/7/l02